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Summary. The two-line model when the location of the changepoint is known is introduced, with an
F-test to detect a change in the regression coef®cient. The situation when the changepoint is un-
known is then introduced and an algorithm proposed for parameter estimation. It is demonstrated
that when the location of the changepoint is not known the F-test does not conform to its expected
parametric distribution. Nonparametric bootstrap methods are proposed as a way of overcoming
the problems encountered. Finally, a physiology example is introduced where the regression
change represents the change from aerobic to anaerobic energy production.
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1. Introduction

The changepoint regression problem was described by Quandt (1958, 1960) since when an

extensive literature has developed (Shaban, 1980; Krisnaiah and Miao, 1988). It can be applied to

physiological situations where the regression slope is not expected to be constant but to change

suddenly at a given point. It is this `changepoint' which is of primary interest, as it may be a

marker for a change in some physiological response, such as age at the menopause in a plot of

bone density against age in a study of female bones (Lees et al., 1983) or anaerobic thresholds in

patients exercising to exhaustion (Bennett, 1988). If the location of the changepoint is known then

the estimation of the parameters in the model is straightforward; however, if it is not known an

extra parameter (the changepoint) must be estimated. Furthermore, the problem is no longer linear

and the only way to estimate the parameters is through numerical optimization.

2. Location of changepoint known

2.1. Estimation of model
For any interval (X 0, X 1) on the real line the problem is de®ned as

f (xi) � f 1(xi; â1) X 0 < xi < ä,

� f 2(xi; â2) ä < xi < X 1

such that f 1(ä; â̂1) � f 2(ä; â̂2), i.e. the slope of the relationship between y and x is constant until
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a point along the x-axis, ä, when it suddenly changes with no discontinuity in the regression

relationship. For a simple two-line linear regression this is equivalent to

f (xi) � á1 � â1xi X 0 < xi < ä,

� á2 � â2xi ä < xi < X 1,

where the parameters are constrained so that á1 � â1ä � á2 � â2ä, such that the function f (x) is

continuous, although not differentiable at the changepoint. The least squares estimates of the

regression parameters can be derived from the normal equations. The design matrix X for

parameters â � (á1, â1, â2)9 is

X �

1 x1 ÿ ä ä
1 x2 ÿ ä ä

..

. ..
. ..

.

1 xt ÿ ä ä
1 0 xt�1

1 0 xt�2

..

. ..
. ..

.

1 0 xT

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
where xt is the point corresponding to the changepoint on the x-axis (á1 is estimated from

á1 � á2 � (â2 ÿ â1)ä), giving the estimate â̂ � (X9X)ÿ1X9Y.

Alternatively the parameters for each half of the model can be estimated from

â̂1

â̂2

� �
� â�1

â�2

� �
ÿ s

t
Cÿ1q (1)

where

â
�9
1 � (X91X1)ÿ1X91Y1,

â
�9
2 � (X92X2)ÿ1X92Y2,

the unconstrained maximum likelihood estimates of â̂1 and â̂2, i.e. a two-line model that is not

constrained to meet at a known changepoint in the range of the data. A full description and the

derivation of the parameters is given in Appendix A. From equation (1), it is evident that one way

of deriving the least squares estimates of the parameters is ®rst to estimate the parameters of the

two-line model where the lines are not constrained to meet at a known changepoint, and then to

adjust these unconstrained estimates so that the two lines are constrained to meet at a known

changepoint. The advantage of deriving the parameters by using equation (1) will become evident

later in the paper.

2.2. Testing for a regression change when the changepoint is known
A two-line regression model will have residual sums of squares (RSSs) that are not larger than

those for the corresponding one-line model. Therefore, to test whether the two-line model has a

statistically better ®t the total RSS can be used to see whether the more complicated two-line

model signi®cantly reduces the error. This leads to an F-test:

F � RSS1 ÿ RSS2

RSS2=(T ÿ 3)
: (2)
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Here the RSS1 and RSS2 are the RSSs for the one- and two-line models respectively and T is the

number of observations. The statistic has an F-distribution with 1 and T ÿ 3 degrees of freedom.

3. Location of changepoint unknown

3.1. Estimation of model
When the location of the changepoint is unknown the problem is no longer linear. The only way to

estimate the parameters is through numerical optimization. However, the numerical optimization

is simpli®ed through the use of equation (1) and the following three considerations (Hudson,

1966). Fit a two-line unconstrained model for points x1, . . ., xt and xt�1, . . ., xT .

(a) If the two ®tted lines meet between the adjacent extreme points of each model (xt, xt�1),

then this model will have an RSS that is no larger than that for any other constrained model

for these two sets of points constrained to meet between (xt, xt�1).

(b) If the two lines do not meet between xt and xt�1, then the constrained model with the

smallest RSS will have a changepoint at either xt or xt�1.

(c) Constraining a model to meet at a required point will not decrease the RSS.

Thus, an algorithm can be easily derived (Fig. 1) that can estimate all the parameters in the model.

This algorithm uses these three considerations, with equation (1) used in the programming. All

unconstrained two-line models are ®tted and the algorithm determines whether each of these

models meets within the required region of x: (xt, xt�1).

The unconstrained models that meet within the required region are recoded as constrained

models. The algorithm then determines whether the residual error from the best ®tting constrained

model is smaller than the residual error from the best ®tting unconstrained model. If so, then the

Fit all possible unconstrained two-line models

If two lines meet such that xt < δ < xt11 then calculate total
restricted RSS; otherwise calculate total unrestricted RSS

Is the smallest restricted RSS < the smallest unrestricted RSS?

Constrain the unrestricted model with the smallest unrestricted RSS
to meet first at xi and then at xi11; select the model which has the
smallest restricted RSS, and add to the restricted RSS models

Take the smallest restricted RSS as the best model and its parameters
as the least squares estimates for the slopes and changepoint

Yes
No

Fig. 1. Algorithm to obtain an estimate of the changepoint
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algorithm stops and takes the constrained model with the smallest RSS as the least squares

estimates. If not, then the best ®tting unconstrained model is constrained, using equation (1), to

meet at either xt or xt�1 and added to the constrained models. This process is repeated until we

obtain the least squares estimates. Fig. 1 more clearly explains the iterative process.

An alternative algorithm to estimate the parameters of the changepoint regression is the

Gauss±Newton algorithm (Thisted, 1988). However, Fig. 2 highlights the main issue in using the

Gauss±Newton algorithm for this particular problem. Fig. 2 is a plot of the RSS of 98 two-line

models constrained to meet at each possible point on the x-axis (x2 � 2, x3 � 3, . . ., x99 � 99).

The original data were simulated under a null model of a common slope of 2 (intercept 0), with a

variance of 100. As is evident from Fig. 2, local minima can occur in the RSS along the x-axis

which can cause problems when using the Gauss±Newton algorithm (Draper and Smith, 1981).

However, as the algorithm in Fig. 1 is tailored for this speci®c changepoint problem, it is not

affected by local minima and is thus more ef®cient at parameter estimation.

3.2. Testing for a change in slope
An F-statistic can be derived (Worsley, 1983) that again uses the ratio of the sum of squares

between the one- and two-line models:

F � (RSS1 ÿ RSS2)=2

RSS2=(T ÿ 4)
: (3)

If the changepoint has to be estimated, this no longer has an exact F-distribution under the null

hypothesis (Hinkley, 1988). If the statistic had an exact F-distribution it would be with 2 and

T ÿ 4 degrees of freedom.

Fig. 2. RSS for the two-line model versus the position of the change
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3.2.1. Simulation

To investigate how well the distribution of the `F'-statistic is approximated by the F-distribution,

simulations were performed using the interactive matrix language in SAS (SAS Institute, 1985).

Simulated F-values were generated by ®tting a two-line model to a set of data simulated from a

one-line model. The null model was assumed to have a common slope of 2 (intercept 0), with a

variance of 100. The simulation was repeated 1000 times. If regular asymptotic theory could be

applied then the `F'-statistic would have an F-distribution on 2 and T ÿ 4 degrees of freedom.

100 points were ®tted by each model (x1 � 1, x2 � 2, . . ., x100 � 100), giving an F-distribution on

2 and 96 degrees of freedom. Fig. 3 gives a probability plot of simulated F-values, against ranked

deviates distributed as F on 2 and 96 degrees of freedom. This plot looks fairly straight, except

that there is a slight kink in the line at the beginning and at the end of the plot, but the slope does

not seem to be 1.

An F-distributed random variable with m and n degrees of freedom has expected mean and

variance (Mood et al., 1974)

mean � n

nÿ 2
for n . 2,

variance � 2n2(m� nÿ 2)

m(nÿ 2)2(nÿ 4)
for n . 4:

Therefore, for an F-test on m � 2 and n � 96 degrees of freedom the expected mean and variance

are 1.021 and 1.088 respectively. The mean and variance of the simulated F-values were 1.687

Fig. 3. Probability plot of ranked simulated F-values against ranked deviates distributed as F on 2 and 96
degrees of freedom
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and 1.405, 65% and 30% bigger than expected. Thus, the probability plot and the deviation from

the expected mean and variance suggest that asymptotic theory cannot be applied to the F-test.

3.3. Bootstrapping
The F-test mentioned previously relies on assumptions regarding the distribution of the param-

eters. It is these assumptions which cause the test to fail. Efron and Gong (1983) proposed

nonparametric bootstrap methods to overcome problems when using parametric tests. Bootstrap

methods have been recommended for linear regression analysis (Bunke and Droge, 1984; Wu,

1986) and for the extension of linear regression, changepoint regression (Hinkley, 1988), as well

as a situation analogous to changepoint regression, mean shift models (Hinkley and Schechtman,

1987). These bootstrap methods are now investigated in detail for the changepoint problem.

The methodology in applying bootstrap methods to the changepoint problem is quite straight-

forward.

Step 1: for a given set of data obtain the best ®tting two-line and one-line models and calculate

the F-statistic.

Step 2: calculate the residuals for the two-line case.

Step 3: using the original x-values, recalculate the new y-values, by using the values from the

best ®tting one-line model and adding an error term, sampled with replacement from the set of

residuals from the best ®tting two-line model.

Step 4: to this new set of data, ®t a two-line and a one-line model and calculate the F-statistic.

Step 5: repeat steps 3 and 4 a large number of times, each time using the one-line parameters

and two-line residuals from the original data.

A bootstrap distribution for the F-test can be derived and a P-value can thus be calculated. The

methodology is quite computer intensive although the algorithm in Fig. 1 speeds up the estimation

of the parameters.

3.3.1. Simulation

To investigate the properties of the bootstrap for the changepoint regression problem a simulation

exercise was undertaken. Simulated results were again generated by using the interactive matrix

language in SAS (SAS Institute, 1985).

Simulations were initially undertaken to investigate the in¯uence of the location of a

changepoint on the x-axis on the power of a test for various changes in slope. The data were

simulated for regression changes at all the points along the x-axis from x2 to x49 on a 50-point

scale. 100 simulations were carried out for each point on the x-axis to estimate the empirical

power. For each simulation a bootstrap distribution of 100 points was generated and a bootstrap

signi®cance level of 5% was chosen (thus 48 3 100 3 100 simulations were done). Fig. 4 gives

the empirical power from the simulations of regression changes at various points along the x-axis,

for various values of a standardized difference d, where d is de®ned as (â1 ÿ â2)=ó , i.e. the

difference in slopes before and after the changepoint, standardized by dividing by ó, the standard

deviation about the two-line model. The lines are jagged owing to the noise in the simulations.

The power is greatest for a changepoint that is near the centre of the x-axis and falls towards each

end of the range. The power also increases with increasing sizes of the standardized difference d.

The implication of these results is that, when designing a study to investigate a possible regression

change, it should if possible be ensured that there are the same numbers of points before the

changepoint as after it, to guarantee the appropriate power.

An equivalent simulation was undertaken to assess the effect that the number of points in the
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regression analysis had on the power. Data were simulated for regression changes at the midpoint

along the x-axis for various numbers of points in the regression (from 10 to 50) for various

standardized differences d. 100 simulations were carried out for each number of points to estimate

the empirical power. For each simulation a bootstrap distribution of 100 points was generated and

a bootstrap signi®cance level of 5% was chosen (thus 40 3 100 3 100 simulations were done).

Fig. 5 gives the empirical power for a regression change for various numbers of points. From these

results it seems that for a large regression change at the midpoint of the x-axis the number of

points required is quite small (14 for d � 1 at 80% power) with an increasing number of points

required for smaller standardized differences.

4. Worked example

When people exercise they need to produce energy and there are different metabolic pathways by

which this energy is obtained (aerobic and anaerobic). For a given individual it is important to

know whether a given pathway changes during exercise and, if so, when. One way of detecting this

is through examining the relationship between two metabolic variables over time while the person

is exercising. In this speci®c example a rower was connected to measuring equipment that reads

certain physical responses over time. The workload was increased over time, i.e. the resistance of

the rowing machine to the rower was increased.

The variables considered here are those of volume of oxygen inhaled and carbon dioxide

exhaled in 1 min. The measurements were taken every 30 s up to a maximum of 17.5 min. What is

of interest is whether there is an approximately linear relationship between the two variables or

whether there is a change in slope once a critical level of oxygen inhalation is reached. The

changepoint represents the point at which a subject switches metabolic pathways, from aerobic to

anaerobic.

Fig. 4. Empirical power versus the location of the regression change for various slope differences: d,
standardized difference 0.2;Ð, standardized difference 0.5; h, standardized difference 1.0
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The data are given in Table 1 and are plotted in Fig. 6. From looking at the data it seems that

the variables increase over time and that there is some ¯uctuation due to random variation.

The best ®tting single-line model with an RSS of 1.072 for carbon dioxide exhaled (Yi) against

oxygen inhaled (X i) is

Yi � ÿ0:659� 0:067X i

Fig. 5. Empirical power versus the number of points used in the regression change for various slope differences:
d, standardized difference 0.2;Ð, standardized difference 0.5; h, standardized difference 1.0

Table 1. Data collated from measurements over time: volume of oxygen inhaled per minute and volume of
carbon dioxide exhaled

Time ordering Volume of oxygen (X)
(l minÿ1)

Volume of carbon
dioxide (Y) (l minÿ1)

Time ordering Volume of oxygen (X)
(l minÿ1)

Volume of carbon
dioxide (Y) (l minÿ1)

1 12.5 0.75 19 44.2 2.12
2 26.2 1.12 20 47.9 2.35
3 24.8 0.98 21 49.9 2.50
4 27.4 1.13 22 48.1 2.48
5 31.1 1.31 23 48.4 2.49
6 34.6 1.47 24 51.7 2.71
7 21.5 0.93 25 51.8 2.74
8 27.9 1.34 26 55.5 3.00
9 29.2 1.36 27 54.9 3.02

10 35.2 1.60 28 57.0 3.21
11 32.6 1.47 29 57.9 3.30
12 34.9 1.57 30 58.3 3.37
13 34.9 1.59 31 58.2 3.42
14 37.6 1.73 32 59.5 3.53
15 36.3 1.68 33 59.7 3.55
16 40.1 1.88 34 61.8 3.76
17 42.7 2.01 35 48.4 2.96
18 43.4 2.07
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and the best ®tting two-line model with an RSS of 0.389 is

Yi � 0:076� 0:042X i 12:5 < X i < 39:46,

Yi � ÿ1:659� 0:086X i 39:46 < X i < 61:8:
(4)

A comparison of the two- and one-line models gives an F-statistic of

1

2
(1:072ÿ 0:389)

0:389=31
� 27:21:

If the statistic had an exact F-distribution it would be with 2 and 31 degrees of freedom. The

bootstrap P-value (on 1000 simulations) is 0.001. The two-line model of best ®t is highlighted in

Fig. 6. A visual inspection of Fig. 6 gives the impression that this model represents the data well.

Although there is more than a twofold increase in the slope between the two halves of the model,

the standardized difference, at just 0:071 � (0:086ÿ 0:042)=0:624, is quite small.

There is thus strong evidence to suggest that the linear relationship between the amount of

carbon dioxide exhaled and oxygen inhaled changes once the amount of oxygen exceeds about

39 l minÿ1. This could be due to the fact that at the start of the exercise, during the aerobic

production of energy, oxygen is used, but as the exercise becomes more dif®cult the rower's energy

requirement exceeds the quantity that can be produced through the aerobic pathway alone. At this

point the rower starts to make use of anaerobic energy production and this causes the sudden

change in the linear relationship between the volumes of carbon dioxide and oxygen.

These data could also be ®tted by a curve. Indeed for this particular example an exponential

curve would have a slightly better ®t with an RSS of 0.337, with one fewer parameter. However, a

Fig. 6. Volume of carbon dioxide exhaled (litres per minute) versus volume of oxygen inhaled (litres per minute)
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curve would not represent either the physiology or the objectives of this pharmacological model.

In practice the rowing model would be used in healthy volunteers, in early phase drug develop-

ment, to investigate the possible pharmacological activity of a new chemical entity and more than

one subject would undertake the challenge, maybe in a crossover trial with a number of regimens

or doses. New chemical entities that could be investigated in this pharmacological model are

therapies which increase glycogenolysis, increasing hepatic and muscle glycogen stores or

therapies that reduce the production of lactic acid, such as creatinine-containing products. These

types of therapies would be expected to delay the changepoint from aerobic to anaerobic

production.

5. Discussion

This paper has proposed an algorithm for parameter estimation where there is an unknown

changepoint. The algorithm is recommended for changepoint regression as it is tailored for this

speci®c problem and overcomes issues associated with local minima. Finally, it is proposed that

nonparametric bootstrap methods are used to assess changepoint models.

Appendix A

For any interval (X 0, X 1) on the real line the model is de®ned as

f (xi) � f 1(xi; â1) X 0 < xi < ä,

� f 2(xi; â2) ä < xi < X 1:

Given a set of observations (x1, x2, . . ., xn) � (X91, X92), where X91 � (x1, x2, . . ., xt)9 and X92 � (xt�1,
xt�2, . . ., xT )9, and corresponding values of Y , (Y91, Y92), to obtain the least squares estimates of the
parameters, S needs to be minimized, where S is de®ned as

S � (Y1 ÿ X1â1)9(Y1 ÿ X1â1)� (Y2 ÿ X2â2)9(Y2 ÿ X2â2),

where Y � (Y1, Y2), subject to a linear constraint of the form

g(â̂91, â̂92) � (â̂91, â̂92)q � d: (5)

For the situation of two straight lines, q would be (1, ä, ÿ1, ÿä)9 and

g(â̂91, â̂92) � á1 � â̂1äÿ á2 ÿ â̂2ä � d:

For the special case of a continuous regression with no break, d � 0, whereas, for the general case,
d 6� 0.

The minimum of S can be obtained by using the Lagrange multiplier argument, from

dS

dâi

� ë
dg

dâi

� 0: (6)

Hence, the maximum likelihood estimates of â̂1 and â̂2 can be derived from

â̂1

â̂2

� �
� â̂�1

â̂�2

 !
� d ÿ s

t
Cÿ1q (7)

where

â
�9
1 � (X91X1)ÿ1X1Y1,

â
�9
2 � (X92X2)ÿ1X2Y2,

the unconstrained maximum likelihood estimates of â̂1 and â̂2, and
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Cÿ1 � Cÿ1

1 0

0 Cÿ1

2

� �
with C1 � X91X1 and C2 � X92X2.

Using the notation of Hudson (1966),

s � (â
�9
1 , â

�9
2 )q,

t � q9Cÿ1q;

thus, the solution for least squares estimates for the parameters for the general case where (â̂91, â̂92)q � d
given by Seber (1977) has been derived. By setting d � 0 such that (â̂91, â̂92)q � 0 the least squares
estimates for the special case á1 � â̂1ä � á2 � â̂2ä is derived, i.e.

â̂1

â̂2

� �
� â�1

â�2

� �
ÿ s

t
Cÿ1q: (8)

Thus, the parameters in the two-line regression model can be obtained via equation (8), which uses the
unconstrained estimates for the slopes and adjusts them so that the two lines meet at the required point.
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